NUMERICAL STUDY OF THE BEHAVIOR OF A UNIFORM
“"SPOT*" IN AN IDEAL DENSITY-STRATIFIED LIQUID

B. G. Kuznetsov and G. G. Chernykh UDC 532.5

A numerical analysis of the flow arising as a result of the collapse of a uniform spot in a
heavy ideal liquid linearly stratified with respect to density is presented. The nonlinear
model of the phenomenon is employed. The numerical results are compared with experi-
ment,

1. We shall consider a plane transient flow arising as the results of the collapse of a uniform "spot®
(a region of liguid with constant density) in a heavy ideal liquid stratified with respect to density. We shall
assume that the stratification of the liquid is due to the dissolution of salt in it.

The collapse of a spot in a density-stratified liquid and the associated development and propagation
of internal waves have been studied in a number of theoretical and experimental investigations. As regards
experiments we may cite [1, 2]. The collapse of a spot and the internal waves arising as a result of this
were studied numerically in [3], the stratification of the liquid being regarded as weak. This enabled the
author to use the Boussinesq [4] approximation to linearize the system of equations describing the problem
in relation to density.

A numerieal and analytical study of the collapse of a spot was also presented in [5]; it was assumed
that the pressure at the boundary of the spot was distributed in accordance with a hydrostatic law. An
approximate system of differential equations describing the behavior of a spot was derived in [6]; the resul-
tant approximate system of equations constitutes a linearized system of equations of the hydrodynamics
of an ideal liquid and may be solved analytically. In addition to an experimental investigation into the be-
havior of spots, an approximate system of equations was also derived and solved analytically in [7].

A nonuniform spot with a type of stratification differing from the stratification of the region of liguid
outside the spot was studied in [8]. In this form of the problem (in contrast to [3]) it was not assumed that
the stratification was weak; the diffusion of the salt in the solution was taken into account. The problem
was solved numerically using economical difference schemes [9].

2. We shall assume that the spot is placed in a rectangular tank with walls fairly well removed from
the spot and impenetrable to the liquid. The upper and lower walls of the tank we shall call I, Tj, the
right and left-hand vertical walls I';, T';,. The spot we shall also consider rectangular (at the initial instant
of time), with corresponding boundaries <y, v, v3, 745 it Will be regarded as placed centrally in the tank.

Let us denote the region of the tank external to the spot at the initial instant of time by ©,, and the
region of the tank occupied by the spot at the initial instant of time by Q,, so that the tank constitutes a re-
gion Q;=0, U Q,. Now let u, v be the vector components of the mass-average velocity of the particles of
the pure liquid, u,, v{ be the vector components of the mass-average velocity of the particles of dissolved
salt, u,, v, be the velocity components of the particles of solution, p be the density of the solution, p =p,+
04, Where p, =const is the density of theliquid, p, is the density of the dissolved salt, p is the pressure, g is
the gravitational acceleration, A =const is the diffusion coefficient of the salt in the solution. The conser-
vation equations of the mass of liguid and the salt dissolved in it and the equations representing the change
in the momentum of the mixture take the following form in this nomenclature [10]:
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Uy + vy, =0
o1t -+ (pﬂll)x -+ (p1U1)y =90
P (wge -+ uotigy + Vallay) + px =0 2.1
0 (Vo + Uoax + Vatay) + py = — gp

The lower indices X, y, t denote differentiation with respect to the corresponding variables.
‘ Adding the relations
U —u = — 7\4p1_191x, U — U= — 7~pflpw (2.2)

to the system (2.1) in order to relate the velocity components of the liquid to those of the salt dissolved in
it, we obtain a closed set of equations (2.1), (2.2). Making use of Egs. (2.2) and neglecting terms of the
second order in A in the momentum equations (A is a small quantity), we obtain the following system of
equations describing the problem under consideration:

Uy -+ vy =20
o+ (up)x -+ (Vp)y = 7”(9 xx +pyy) (2.3)
p(u’t + Ully + U”y) -+ Py = — ;"py (Ux - uy)

o) (v, + uv, + Vy) + py = }‘Px (ve — uy) — 8p

The problem thus reduces to one of finding the functions u, v, p, p fromthe system of equations (2.3)
with initial conditions

u=v=0 =z y=Q,, =0
p=po (I—apyry), z,ysQ, =0
0 =p¢p T, YEQ, =0 (2.4)

where a =py for t=0, X, y & Q4, p;=const (the origin of coordinates is placed in the center of the tank).
The unknown functions satisfy the following boundary conditions:

v=0, z,yesT, Iy a=0, z,y=T, I}
e 290(1 —1/2 apO_l Ly)v Zy yEFI (2.5)
S ] (1 '{'1/2 apo_l Ly), z, yEP3;Px=O7 x,y’érz, I,

where Ly is the vertical dimension of the tank.

Let L be the horizontal dimension of the tank, I, [ y the horizontal and vertical dimensions of the
spot at the initial instant of time.

Introducing dimensionless independent variables and functions

@y =2z/L, yju=y/L, ps=0p/ps
[1 = z(ag /po)lrlz, Ug = U / L (ﬂ-g /po)nl/z
vy = v/ L(ag/po) s p1 = pL™® (ag)™,

transforming to these in the system (2.3), and returning to the original nomenclature, we may write the
system under consideration thus:

P (u + nuy 4 vuy) + px = ‘-Apy(vx— Uy)

p (v +uvy + vwy) + py = Ap (Ve —uy) — Bp (2.6)
pr + (up)x+ Wp)y =4 (pzx +pvv)
e+ vy =0

where
4 = AL (ag /po)_’/zy B = Po (al)?

Transforming to dimensionless quantities in the initial conditions (2.4), we rewrite these in the form

=0 =z y=Q; t=0
1—Bly, zyes, t=0
=1, zy&Q,, t=0

M= =T~
i
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In conditions (2.5), only the value of the dimensionless density of the mixture on T, T'y vary, that is,

o =1—1(a/2 po Ly zyesTy @.7)
p =1+ (a/2)pyiLly, =z, y=T,

The dimensionless parameters characterizing the problem will be as follows: Ly/L, Ix/L, 1 y/L,
A, B. v

3. For the numerical integration of the problem in hand, we introduce the current function #: u= zpy,
v="¢.. The system (2.6) may then be rewritten: -

(P‘qjtx)x -+ (P'q’ty)v = f
p: + (bup)x — (ﬂ?xp)u =4 (P xx T Pyy) 3.1)
(f=p (b, 0, — 00+ 0, (B+ Ao, + b0, —b b ) +p, by — b, +
+ Aw)) 4 Ao (p, + py) 0=, +0,)

The initial conditions will take the form

'lp = 07 $, y E 93, = O
p = 1— B-lyr z, Y= 91, t=20 (3.2)
o= 1, z, Yy = gg, t=0

The boundary conditions (2.5), allowing for (2.7), become

‘lp=1pt507 x,yern F21 F37 I‘4
o=1—(/2) psiLy, 2 y=T (3.3)
p=1—i—(a/2)po‘1Ly,x, yEr3;px=O’x’yEI‘2’F4

The vorticity w used here is introduced in order to simplify realization of the numerical algorithm
for the solution of the first equation of system (3.1). We require to determine the vorticity on the lines
ry, Ty, T'y, Ty, Making use of the fact that on I'y, I’y w = x5 and allowing for condition (3.3), with the
assumption that the first equation of system (3.1) is satisfied on these parts of the boundary, for the vortic-
ity on the corresponding parts of the boundary we obtain

0 — (P + Ap7lpy) 0y — Ap™ {prx + pyy)o =0 (3.4)

Since at the initial instant of time w =0 along Ty, Ty, it follows from Eq. (3.4) and the first of condi-
tions (3.3) that w=0 on I'y,T,. OnT,, T'yw may be found by extrapolating with respect to the known values
of w inside the tank. It follows directly from the system (3.1) and the conditions (3.2) and (3.3) that the
problem is symmetrical with respect to the axis of ordinates. Along the symmetry axis we put w = px=
2!) =l,bt =0,

4. The algorithm for the solution of the problem is as follows: fort =nAt, where At is the time
step, n is the number of step in time (n = 0) , the values of p, ¢ are known; we find w= Yxx + byy inside
the region Qj and extrapolate to the upper and lower wall of the tank, then find the right-hand side f of
the first equation of system (3.1), after which we solve the first equation of system (3.1) and find the values
of the function ; (nAt, x, y); from the resultant values of P we calculate the values of ¢ [(n+1) At, x, y].
The resultant values of 3 at the (n+1)-th step in time are substituted into the second equation of system
(3.1), and after solving the latter the process is repeated. This algorithm may easily be realized by means
of a finite-difference technique. The mesh is assumed square for the sake of simplicity. The equation w=
Vxx + Pyy 18 realized in the following manner [11}:

‘ﬂ;ﬂ:j = 1/;h™ (¢i—1?j;1 + lPﬂz—{-1,7;‘-i-1 + 1Pi—-1,T;'+1 + \Pi-l-l:ﬂ:i—l
A & (4T b+ b+ i) — 2047)
Vi, g = P (nAL, (i + o)k, (G + B)A)
where h is the step of the mesh.
In seeking the right-hand side f of the first of the equations in system (3.1), we use the ordinary
central differences. We put ¢; = z; in order to find z we use the iterative scheme of a stabilizing correc-

tion [9] approximating the first equation of system (3.2) which incorporates the second order with respect
to the spatial variables:
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Here k is the number of interaction, 7 is the iteration parameter. The iterations end when the dif-

Yil, §<+1 _Ztil, k | becomes smaller than a certain numher € for all the internal points of the mesh,
? ]

For the quantity z% K*+1/2 homogeneous boundary conditions are applied. It is well known [9] that the
scheme of (4.1) has the property of a complete approximation, and in the case of the provlem under consi-

deration, is absolutely convergent. Realization of the scheme of (4.1) is effected by the span method,

ference |z

The determination of
it =l Al 4 0 (A
causes no difficulties; harmonic analysis of this relationship indicates the stability of this stage of the
algorithm underlying the solution of the problem, at least for a sufficiently small At.

In order to solve the second equation of system (3.1) we use the following scheme of splitting [9]:

1/, n
Py — ol
Y;

o

L = Ayl 4.2)

1
= Alp?..;'_ "

where Ay p, Ayp are the difference analogs of the expressions (zpyp)x+ApXX, (szpy) + Apyy, Tespectively,
The splitting scheme (4.2) approximates the second equation of system (3.1) of order O (At+h? and is
absolutely stable,
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TABLE 1 The boundary conditions for the value of a fractional step
are analogous to the corresponding conditions for a complete

sit Resultsof 2y | Calculation ﬁff‘feig;ig: * step. The scheme of (4.2) is realized by the span technique.
In order to estimate the accuracy and stability of the algorithm,
?:gzgg %:Zég 1:%8(7) égg a numerical study of the behavior of the total energy of the mix~
2.3109 1. 117 1.667 2.9 ture was carried out. The calculations showed that the maxi-
g:ggi% ;:%g %:?8(7) é:;}) mum deviation of the energy from its initial value never ex-
4.6218 2.390 2.500 4.60 ceeded 0.19%.
5.3921 2.602 2.833 8.88

5. Using the proposed algorithm, we calculated several

versions of the problem in hand. In realizing the iterative

scheme, the number & was taken within the range 0.1-0.3% max Izrils?l . In order to achieve this accuracy,
L ?

it was sufficient to make six to ten iterations at each step in time. In order to verify the properties of
the mathematical model used for describing the problem, and also the properties of the numerical algorithm
underlying the solution of the problem, we made a direct comparison with existing experimental data [2].
It follows from the experimental data of [2] that the horizontal dimension of the spot, referred to the initial
value, behaves as the following function:

1+ 0.29 (s, for 0< sy0< 2.75
1.03 (5,8)05 for 2.75 < s,0<< 25

where s; =(ag/p‘,)1/2 is the Wessel~Brandt frequency, t is the time in sec. By way of the initial horizontal
dimension of the spot, the diameter of the cylindrical cavity in which the liquid had a constant density p,

at the initial instant of time was taken in [2]. In the present case this will be the quantity /3. We calculated
a version of the problem having the following values of the parameters:

Ly/L =078, I,/L=0.154, [,/L =0.180
4 =0.00011, B =1.336, At= 0.0154, e = 0.0000008

The number of points in the mesh was 40°57. At the initial instant of time the density in the spot is
constant; at succeeding instants of time we shall regard the "spot® as meaning a set of mesh points such
that the density in these differs by not more than 0.4% from the original, the point (i, j) belonging to the spot
if at least one of the mesh points (i, j+1), (i, j—1) together with the point (i, j) satisfies the condition just
formulated.

The results of our comparison between the experimental and calculated data are presented in Table 1.

The results of the calculations'were extracted every 50 time stéps in the form of blocks of values of
the functions p, ¥ at the mesh points and a plot of the lines of equal density at each specific instant of
time, Figures 1-4 illustrates the lines of equal density (with an interval of 0.011) at corresponding instants
of time; this enables us to follow the initial flattening (collapse) of the spot and the development and propa-
gation of the internal waves. Figures 1-4 relate to the values t =0.7703, 2.3109, 3.8515, 5.3921, respectively.
The results of the calculations agree qualitatively with the results obtained in [2, 3].
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