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A numer i ca l  ana lys i s  of the flow a r i s ing  as a resu l t  of the col lapse of a uni form spot in a 
heavy ideal liquid l inea r ly  s t ra t i f i ed  with r e spec t  to densi ty  is p resen ted .  The nonlinear  
model of the phenomenon is employed.  The numer ica l  r e su l t s  a re  compared  with expe r i -  
ment.  

1. We shall  cons ider  a plane t r ans ien t  flow a r i s ing  as  the r e su l t s  of the col lapse of a uni form "spot"  
(a region of liquid with constant density) in a heavy ideal liquid s t ra t i f i ed  with r e spec t  to density.  We shall  
a s sume  that  the s t ra t i f ica t ion  of the liquid is due to the dissolut ion of sa l t  in it. 

The col lapse  of  a spot in a dens i ty - s t r a t i f i ed  liquid and the assoc ia ted  development  and propagat ion 
of in ternal  waves  have been studied in a number  of theore t ica l  and exper imen ta l  invest igat ions.  As r eg a rd s  
expe r imen t s  we may  cite [1, 2]. The col lapse of a spot and the internal  waves  a r i s ing  as  a resu l t  of this 
were  studied numer ica l ly  in [3], the s t ra t i f ica t ion  of the liquid being r ega rded  as weak. This  enabled the 
author to use the Boussinesq [4] approximat ion  to l inear ize  the s y s t e m  of equations descr ib ing  the p ro b l em 
in re la t ion  to density.  

A numer ica l  and analyt ical  study of the col lapse of a spot was a lso  p resen ted  in [5] ; it was  a s sumed  
that the p r e s s u r e  at the boundary of the spot was d is t r ibuted  in accordance  with a hydros ta t ic  law. An 
approximate  s y s t e m  of di f ferent ia l  equations descr ib ing  the behavior  of a spot was der ived in [6]; the r e s u l -  
tant  approx imate  s y s t e m  of equations const i tutes  a l inear ized  s y s t e m  of equations of the hydrodynamics  
of an ideal liquid and may be solved analyt ical ly.  In addition to an expe r imen ta l  investigation into the be -  
havior  of spots ,  an approximate  s y s t e m  of equations was also der ived  and solved analyt ical ly  in [7]. 

A nonuniform spot with a type of s t ra t i f ica t ion  differ ing f r o m  the s t ra t i f ica t ion  of the region of liquid 
outside the spot was studied in [8]. In this  f o r m  of the p rob l em (in con t ras t  to [3]) it was  not a s sumed  that 
the s t ra t i f ica t ion  was weak; the diffusion of the sal t  in the solution was  taken into account. The p rob l em 
was solved numer ica l ly  using economica l  d i f ference schemes  [9]. 

2. We shall  a s s um e  that  the spot is p laced in a rec tangu la r  tank with wal ls  fa i r ly  well  r emoved  f r o m  
the spot and impene t rab le  to the liquid. The upper  and lower  walls  of the tank we shall  call  F1, F3, the 
r ight  and lef t -hand ve r t i c a l  walls  F2, F 4. The spot we shall  a lso cons ider  r ec tangu la r  (at the initial instant 
of t ime) ,  with cor responding  boundar ies  ~/1, 72, 3/3, 3/4; it will be r ega rded  as placed cen t ra l ly  in the tank. 

Let  us denote the region of the tank externa l  to the spot at the initial instant of t ime  by ~21, and the 
region of the tank occupied by the spot at the initial instant of t ime  by ~22, so that  the tank const i tutes  a r e -  
gion ~2~ =f~l U ~22. Now let  u, v be the vec t o r  components  of the m a s s - a v e r a g e  ve loc i ty  of the pa r t i c l e s  of 
the pure  liquid, up v 1 be  the vec to r  components  of the m a s s - a v e r a g e  veloci ty  of the pa r t i c l e s  of d issolved 
salt ,  u2, v z be the ve loc i ty  components  of the pa r t i c l e s  of solution, p be the densi ty of the solution, p =Pl + 
Pz, where  Pz =coas t  is  the densi ty of theliquid,  Pl is the densi ty  of the d issolved salt ,  p is the p r e s s u r e ,  g is 
the gravi ta t ional  acce le ra t ion ,  ~ =const  is the diffusion coefficient  of the sal t  in the solution. The c o n s e r -  
vat ion equations of the m a s s  of liquid and the sa l t  d issolved in it and the equations r ep resen t ing  the change 
in the momentum of the mixture  take the following f o r m  in this nomencla ture  [10]: 
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u~ -+- v u = 0 

9 (vmt + a+v2+ + vmv+v) + P u  : - -  go 

(2.1) 

The lower indices x, y, t denote differentiation with respec t  to the corresponding var iables .  

Adding the relat ions 

u l  - -  u : - -  ~ .91-~plx ,  v ,  - -  u : - -  ~9~-19~u (2.2) 

to the sys tem (2.1) in order  to relate  the veloci ty components of the liquid to those of the salt dissolved in 
it, we obtain a closed set of equations (2.1), (2.2). Making use of Eqs.  (2.2) and neglecting t e r m s  of the 
second order  in X in the momentum equations (X is a small  quantity), we obtain the following sys tem of 
equations descr ibing the problem under considerat ion:  

u+ § vy = 0 

p (u t + uu+ + vuu) § p+ = - -  s (vx - -  uv) 
p (v~+uv~+vvu)+pu=~p~ (v~--u~)--gp 

(2.3) 

The problem thus reduces  to one of finding the functions u, v, p, p f romthe  sys tem of equations (2.3) 
with initial conditions 

U : u : O ,  X , y ~ 3 ,  t :  0 
P ----90 ( t - - a p 0  -1 ~,), x, Y ~ ,  
p ----p0, x , y ~ 2 ~ ,  t = 0  

t----O 
(2.4) 

where a = py for t =0, x, y ~ ~21, 00 =coast  (the origin of coordinates is placed in the center  of the tank). 
The unknown functions satisfy the following boundary conditions: 

v-~ 0, x, y ~ F 1 ,  F~; u : 0, x, y ~ F ~ ,  F4 
p = O 0 ( i - - U 3  a9o  -1 L y ) ,  x ,  y ~ F 1  

9 = p 0  (t ~-1/2 a9o  -1 Lt~), x ,  y ~ F s ; p x  : 0, x, y ~  F2, i' 4 
(2.5) 

where Ly is the ver t ica l  dimension of the tank. 

Let L be the horizontal  dimension of the tank, /x, ly  the horizontal and ver t ica l  dimensions of the 
spot at the initial instant of t ime. 

Introducing dimensionless  independent var iables  and functions 

x l  ---: x / L ,  y l  = y / L ,  p ~ = 9 / 9 0  
t~ ---- t (ag  l p o)'/~, u 3 = u l L (ag  l p o) -'/~ 

v3 = v / L (ag  / P  o)-' ~, P l = P L  -2 (ag) -1,  

t r ans forming  to these in the sys tem (2.3), and re turning to the original nomenclature,  we may write the 
sys tem under considerat ion thus: 

where 

p (at -+- aux -~- vu~) + p++ = - - A p  u (vx - -  u~) 
p (vt + uv~ + vv~) + p y  = Ap ~ (v~ - -  ++y) - -  Bp 

p~ + (up)~ + (vp)y = A (p~  + 0 ~ )  

A = )~L -~ (ag  / p o) -v2, B = p o (aL)  -1 

(2.6) 

Trans forming  to dimensionless  quantities in the initial conditions (2.4), we rewri te  these in the fo rm 

u = v----0, x, y ~ t ] 8 ,  t = 0  
9 = i - - B  - ly ,  x , y ~ l ,  t = 0  
p ----t, x , y ~ 2 2 ,  t = 0  
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A, B. 

In conditions (2.5), only the value of the dimensionless  density of the mixture on F1, F 3 vary,  that is, 

p = l - - ( a / 2 )  p~-XL~, x, y ~ P ,  
p = l  + (a /2)  pciLv, x, y ~ F a  

The dimensionless  pa rame te r s  charac te r iz ing  the problem will be as follows: 

3. 
v =-r  The sys tem (2.6) may then be rewrit ten:  

(] ~ p (~px(~ u -- ~o:r + P:c (B + A~ x + Cxr -- tPu'~x~) + Py (~xtPyy -- CuCxu + 

4-, Ato) -k Ato (Pzx + Pug ), m ----" r + ~Pu'g) 

The initial conditions will take the form 

(2.7) 

Ly/L,  [x /L ,  l y / L ,  

For  the numerical  integration of the problem in hand, we introduce the cur ren t  function r : u = Cy, 

(3.i) 

= 0, x, y ~ ~3, t = 0 
p = i - - B - i y ,  x, y ~ Q 1 ,  
p = i ,  x, y E ~ ,  t ---- 0 

t = 0 (3.2) 

The boundary conditions (2.5), allowing for (2.7), become 

p = 1 -- (a / 2) p0-iL~, x, y ~ F1 (3.3) 

p = t + ( a / 2 )  p0-iLy, x, y ~ F 3 ; p ~ = 0 ,  x , y ~ F 2 ,  F4 

The vor t ic i ty  w used here  is introduced in o rder  to simplify real izat ion of the numerical  algori thm 
for the solution of the f i rs t  equation of sys tem (3.1). We require  to determine the vor t ic i ty  on the lines 
FI,  F2, F0, F a. Making use of the fact that on F2, F 4 co = Cxx and allowing for condition (3.3), with the 
assumption that the f i rs t  equation of sys tem (3.1) is sat isfied on these par t s  of the boundary, for the vor t i c -  
ity on the  corresponding par ts  of the boundary we obtain 

o) t --  (~p~ + Ap-lp~) o)y -- Ap -I (p~ + p~)r = 0 (3.4) 

Since at the initial instant of time co =0 along F2, F4, it follows from Eq. (3.4) and the f irst  of condi- 
tions (3.3) that co - 0 on I" 2, F4. On FI, F 3 co may be found by extrapolating with respect to the known values 
of r inside the tank. It follows directly from the system (3.1) and the conditions (3.2) and (3.3) that the 
problem is symmetrical with respect to the axis of ordinates. Along the symmetry axis we put co = Px = 

r =r =0. 

4. The algori thm for the solution of the problem is as follows: for  t =nAt,  where At is the t ime 
s~ep, n is the number  of step in t ime (n -> 0) , the values of p, r a re  known; we find co = Cxx + Cyy inside 
the region ~ and extrapolate to the upper and lower wall of the tank, then find the r ight-hand side f of 
the f i rs t  equation of sys tem (3.1), af ter  which we solve the f i rs t  equation of sys tem (3.1) and find the values 
of the function Ct (nAt, x, y); f rom the resultant  values of @t we calculate the values of ~ [ (n+ l )At ,  x, y]. 
The resul tant  values of ~b at the (n+ l ) - th  step in t ime are  substituted into the second equation of sys tem �9 
(3.1), and after  solving the lat ter  the p rocess  is repeated. This a lgori thm may eas i ly  be real ized by means 
of a f ini te-difference technique. The mesh is assumed square for the sake of simplicity. The equation co = 
Cxx + ~yy is real ized in the following manner [11]: 

( o n  n n 

+ 4 (~--L~ + @i,j-1 + ~+1,~ + $~,s+~) -- 20~,~) 

~i+=. i+~ ~ ~P ((nAt, (i + a)h, (] + ~)h) 

where h is the step of the mesh. 

In seeking the r ight-hand side f of the f i rs t  of the equations in sys tem (3.1), we use the ordinary  
central  differences.  We put r - z; in o rder  to find z we use the i terative scheme of a stabilizing c o r r e c -  
tion [9] approximating the f i rs t  equation of sys tem (3.2) which incorpora tes  the second o rde r  with respect  
to the spatial  var iables :  
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(p~,s+, l iz~ , j+l  - -  zo~ , s z i , s  + p i , s _ v ~ z i , s _ ~ )  - -  l i ,S  (4 .1 )  

z n , } ; + l  z n  kz-l]~ 
h -  2 . n . n , k + l  n,~ 

= [P i ,S+V,  t z i , j + l  - -  z L j §  ) - - -  "c 

2 n . n , h ' + l  Z n , k \  ~ _  n . n , ~ + l  n , k  
-- Pi,j tz~,j -- ,,J / Pi,s-,,, tz~d-1 -- z~,s_~)] 

Here k is the number of interaction, T is the iteration parameter.  The iterations end when the dif- 

ference ]z n, k + l  _zn ,  k ] becomes  smal ler  than a certain number e for all the internal points of the mesh. 
i, j 1, j 

For the quantity z n, k+l /2  homogeneous boundary conditions are applied. It is well  known [9] that the 
scheme of (4.1) has the property of a complete approximation, and in the case  of the problem under cons i -  
deration, is absolutely convergent. Realization of the scheme of (4.1) is effected by the span method. 

The determination of 
~+~ ~ .+_ ~,s = ~ , s + A t ~ j  O(At ~) 

causes  no difficulties; harmonic analysis  of this relationship indicates the stability of this stage of the 
algorithm underlying the solution of the problem, at least  for a sufficiently small  At. 

In order to solve the second equation of sys tem (3.1) we use the following scheme of splitting [9]: 

p ~ * { ~  _ _  p.n . o n + l  p n + , , ' ~  
,2 ~"~ - -  h n n + ' / ~  - i , j  - -  ~ , j  n §  

At - -  ~ m , S  , At A2p~,s (4 .2 )  

where A 10, A2P are the difference analogs of the express ions  ( r  (r + Apyy,~respectively. 
The splitting scheme (4.2) approximates the second equation of s~stem (3.1) of order O ( A t + h  2) and is 
absolutely stable. 
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TABLE 1 

s~t 

0. 7703 
t.5406 
2.3109 
3.08t2 
3.85t5 
4.62t8 
5.392t 

Results of [2] 

i .219 
t .463 
t.7t7 
1.978 
2.162 
2.390 
2.602 

Calculatio n 

1 .t67 
t.500 
1.667 
2.000 
2.t67 
2.500 
2. 833 

Percentage �9 
difference �9 

4.27 
2.53 
2.9t 
t .tt 
0.23 
4.60 
8.88 

The boundary conditions for the value of a fract ional  step 
are  analogous to the corresponding conditions for a complete 
step. The scheme of (4.2) is real ized by the span technique. 
In o rder  to es t imate  the accuracy  and stability of the algori thm, 
a numerica l  study of the behavior of the total energy of the mix-  
ture was ca r r i ed  out. The calculations showed that the maxi-  
mum deviation of the energy f rom its initial value never ex- 
ceeded 0.19%. 

5. Using the proposed algorithm, we calculated severa l  
vers ions  of the problem in hand. In real izing the i terat ive 

scheme, the number ~ was taken within the range 0.1-0.3% max I z-n'kl �9 In o rder  to achieve this accuracy,  
i, j 1, 3 

it was sufficient to make simto ten i terat ions at each step in t ime. In o rde r  to ver i fy  the proper t ies  of 
the mathematical  model used for descr ibing the problem, and also the proper t ies  of the numer ica l  a lgori thm 
underlying the solution of the problem, we made a di rect  comparison with existing experimental  data [2]. 
It follows f rom the experimerital data of [2] that the horizontal  dimension of the spot, r e f e r r ed  to the initial 
value, behaves as the following function: 

I + 0.29 (sit) 1.~ for  0 < slt < 2.75 

i.03 (sit) ~ for  2.75 ~< s~t <~ 25 

where s 1 =(ag /po ) l /2  is the W e s s e l - B r a n d t  frequency, t is the t ime in sec. By way of the initial horizontal 
dimension of the spot, the diameter  of the cyl indrical  cavity in which the liquid had a constant density P0 
at the initial instant of t ime was taken in [2]. In the present  case this will be the quantity lx. We calculated 
a ve rs ion  of the problem having the following values of the pa rame te r s :  

L u / L = 0 . 7 1 8 ,  l x / L  =0 . i54 ,  l u / L = 0 A 8 0  

A = 0.00011, B = 1.336, At = 0.0t54, e = 0.0000008 

The number of points In the mesh was 40" 57. At the initial instant of t ime the density in the spot is 
constant; at succeeding instants of t ime we shall r ega rd  the "spot" as meaning a set of mesh points such 
that the density in these differs by not more  than 0.4% f rom the original,  the point (i, j) belonging to the spot 
if at least  one of the mesh points (i, j + 1), (i, j - D  together  with the point (i, j) sat isf ies the condition just 
formulated. 

The resul ts  of our compar ison between the experimental  and calculated data are  presented in Table 1. 

The resul ts  of the calculat ions 'were extracted every  50 t ime steps In the form of blocks of values of 
the functions p, r at the mesh points and a plot of the lines of equal density at each specific instant of 
t ime. Figures  1-4 i l lustrates  the lines of equal density (with an interval of 0.011) at corresponding instants 
of t ime; this enables us to follow the initial flattening (collapse) of the spot and the development and propa-  
gation of the internal waves.  Figures  1-4 relate to the values t =0.7703, 2.3109, 3.8515, 5.3921, respect ively.  
The resul ts  of the calculations agree qualitatively with the resul ts  obtained in [2, 3]: 
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